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Abstract
The extraordinary Hall resistivity ρex and the magnetization M of canonical
spin glasses were measured simultaneously as a function of temperature, with
close attention to thermal and magnetic field hysteresis. The data for ρex show
an anomaly at the spin glass transition temperature Tg. Moreover, the value of
ρex/M , which represents the chiral susceptibility of the system in the present
case, also shows the anomaly. In conventional theories, the extraordinary
Hall resistivity ρex is represented, ρex = M(Aρ + Bρ2), where ρ is the
resistivity, and A and B are constants. Since ρ(T ) is monotonic and smooth, the
behaviour of ρex/M clearly indicates that one has to include another term in the
expression for ρex. The critical phenomena of the spin glass transition from Hall
effect measurements is discussed in comparison with that from magnetization
measurements. One of the critical exponents for the chirality, δχ , was obtained
from the field dependence of RS . The value of δχ should be compared with
that of δ determined from the magnetization measurements. The results can be
interpreted consistently in terms of a chirality ordering model of canonical spin
glasses.

For the last several decades, spin glass (SG) has been extensively studied as a prototype of
complex systems [1]. There is a consensus that the SG transition is a ‘true’ thermodynamic
phase transition. The most familiar and well-studied SG systems are the dilute magnetic
alloys such as AuFe, AgMn and CuMn, so-called canonical SGs. In canonical SGs, the
localized moments of randomly distributed magnetic atoms interact with each other via the s–
d exchange interaction mediated by the conduction electrons, the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction. The RKKY interaction is isotropic, and in the absence of spin
anisotropy a canonical SG is expected to be well described by the three-dimensional (3D)
Heisenberg model. In real alloys the Dzyaloshinsky–Moriya (DM) random anisotropy is
inevitably present, whose magnitude depends on the non-magnetic host metal. In many cases
the experimental results of canonical SGs have been interpreted by the mean field model which
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is an extended Sherrington–Kirkpatrick (SK) model of a Heisenberg spin system [1]. The
theoretical arguments still continue whether or not a 3D Heisenberg random spin system can
show an SG transition without additional anisotropy at a finite temperature [2, 3]. However,
these theoretical works including the mean field theory face serious difficulties in comparing
with the experimental results even when the DM anisotropy term is taken into consideration.

In many theories, Tg depends on only the magnitude of the anisotropy D in small D
region [2]. Though the value of D of AuFe is about ten times larger than that of CuMn, these
alloys with the same concentration of magnetic impurities have almost the same SG transition
temperatures. The discrepancy between the experimental results and the mean field theory has
been pointed out on the SG transition line in a magnetic field. The Almeida–Thouless (AT)-like
line, H ∼ A(Tg − Tf(H ))3/2, is observed in most canonical SGs, but the coefficient A is a few
tens of times smaller than that predicted by the mean field theory [4]. There are contradictions
in the critical phenomena of the SG transition. The Heisenberg–Ising crossover [5], which
is expected for a 3D Heisenberg SG with DM anisotropy, has not been clearly observed yet.
The scaling analysis in the appropriate temperature and magnetic field regions has given the
same critical exponents to AuFe and AgMn even though they have quite different magnitudes
of the anisotropy [6–8]. This suggests that the family of canonical SGs belongs to the same
universality class.

Kawamura [9] proposed the chirality hypothesis, which can overcome the above-
mentioned difficulties. The scenario of SG transition by the chirality mechanism is as follows:
an isotropic Heisenberg random spin system does not undergo an SG transition by itself but has
a ‘chiral glass’ (CG) transition at a finite temperature. The (scalar) chirality, χi jk ≡ �Si · �Sj × �Sk ,
is not coupled to the spin so long as the isotropy is perfect. Then, however, the possible
weak random DM anisotropy can mix the spin with the chirality. Consequently, an apparent
SG transition becomes observable at a finite temperature in a real spin system. Numerical
estimates [10] give the critical exponents βχ ∼ 1, γχ ∼ 2 to the chiral glass transition.
These values are similar to the corresponding critical exponents of the SG transition of
canonical SGs deduced from nonlinear susceptibility measurements [6–8]. Though the chirality
scenario is attractive, experimental testing has not progressed because of the difficulty in direct
measurement of the chirality.

Recently, Tatara and Kawamura [11] have derived the chirality contribution to the
extraordinary Hall resistivity by applying the linear response theory and the perturbation
expansion to the weak coupling s–d Hamiltonian. Kawamura [12] has made predictions on the
behaviour of the extraordinary Hall resistivity of canonical SGs based on the chirality scenario
of the SG transition. The main purpose of the present article is to verify the chirality scenario
by simultaneously measuring the Hall resistivity and the magnetization in canonical SGs.

The samples used for the measurements are AuFe and AuMn alloys. We prepared ingots
of the sample alloys by melting constituent elements in an argon arc-furnace. A ‘cloverleaf-
shaped’ sample 6 mm in diameter and 0.2 mm thick was cut out by a spark cutting machine from
each of the ingots. The sample was sealed in a vacuous quartz ampoule, annealed at 850 ◦C for
1 week, and quenched to the room temperature. It should be noted that all measurements of the
Hall resistivity, the magnetization and the resistivity were done on the same sample.

Several authors have reported on the Hall effect of canonical SGs [13–15]. The temperature
dependence of Hall resistivity ρH is basically similar to that of the AC susceptibility or the zero-
field cooled (ZFC) magnetization under a weak magnetic field. In the conventional method of
the Hall measurement, a transverse voltage is measured with a constant current in an applied
magnetic field perpendicular to both the direction of the current flow and the voltage drop.
Practically, the terminal misalignment or the gradient of potential surface produces a spurious
Hall voltage. In order to cancel this spurious Hall voltage, the magnetic field or the sample
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is usually flipped through 180◦, and the mean value of voltage drop is adopted as the ‘true’
Hall voltage. All the previous Hall effect measurements of canonical SGs [13–15] were made
by using this procedure. As is pointed out by the author of [13], the flipping of the sample
in a field breaks the thermodynamic state of the SG. It is well known that the thermodynamic
state of an SG is strongly dependent on the field and the temperature hysteresis. Thus, the
above-mentioned procedure cannot be adopted in the present experiments. Accordingly, we
have developed a simultaneous measurement system of ρH and M under the correct ZFC
and field-cooled (FC) conditions. All the measurements of ρH, M and the resistivity ρ were
made while the sample was embedded in a commercial-type SQUID magnetometer MPMS-7
(Quantum Design). The Hall resistivity and the resistivity measurements were done on the
cloverleaf-shaped sample with four terminals following the van der Pauw method [16]. The
advantage of this method is that one can obtain the Hall resistivity and the resistivity on the
same sample by changing the combination of the terminals, that is, the flipping of the sample
is not necessary. The actual measurement procedure is described below. In the absence of the
field, the transverse voltage Vxy(0) to the current flow is recorded and the Hall voltage VH(H )

is obtained by subtraction: Vxy(H ) − Vxy(0). The residual field of the MPMS magnet was
estimated to be less than 1.6 G. The effect of the residual field of this magnitude is negligibly
small in the present work. In the ZFC measurements, the sample is cooled in zero field to 5
from 60 K. After a field is applied, Vxy(H ) and M are simultaneously measured at constant
temperature increments of 1 K. The FC measurements are successively made in the same way
as the ZFC measurements after cooling the sample in the field. Consequently ρH and M can
be obtained under the ZFC and FC conditions in the same thermal and field conditions without
flipping the sample in the field. The temperature and field are controlled by using the MPMS
sequence system. Though ρ under the ZFC and FC conditions is separately measured from
ρH and M , the same sequence ensure the same experimental conditions. Since the Hall signal
is very small in the present case, we use a lock-in amplifier with a highly stable AC constant
current source.

Recently, some features [17–20] of the extraordinary Hall coefficient Rs ≡ ρex/M , which
are not understood by the conventional theory [21, 22], have been reported in SGs; ρex is the
extraordinary Hall resistivity and M is the magnetization, Also, in [18–20], a deviation between
the ZFC and the FC data below Tg has been reported.

Figure 1 shows one of the results of the simultaneous measurement of ρH and M . For
the ZFC result, the sign and the magnitude of ρH are consistent with those of the previous
measurement [13]. ρH in the FC condition was obtained for the first time in this measurement.
In the figure, one can see that the temperature dependence of ρH is quite similar to that of M ,
and that significant differences between ZFC and FC results of ρH appear below the temperature
Tg(H ) where the difference also appears in M .

The Hall resistivity of magnetic materials consists of two parts: the ordinary part ρo

and the extraordinary part ρex. Extrapolations to high temperatures to obtain an estimate
of the ordinary part for the present alloy indicate that the ordinary Hall coefficient is about
−8 × 10−13 � cm G−1. In the temperature and the field ranges of interest of the present
system, the ordinary part is much smaller than the extraordinary part; therefore, we hereafter
neglect the ordinary part, ρH = ρo + ρex ∼ ρex.

Figure 2 shows the temperature dependence of the Hall resistivity ρex divided by the
simultaneously measured M in the fields indicated. One can see that the ZFC curve at 500 G
shows a maximum around Tg(H ) and that the maximum is suppressed by the field. It is
remarkable that the value of ρex/M also has the differences between ZFC and FC measurements
below Tg(H ). Tg(H ) shifts to lower temperatures as the field increases. It is well known that
the SG order is sensitive to a magnetic field and the magnetic susceptibility involves large
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Figure 1. Simultaneous measurement of the Hall resistivity ρH (∼ρex) and magnetization M for
AuFe 8 at.% Fe (taken from [18]).
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Figure 2. Temperature dependence of ρex/M in the fields indicated. The arrows mark Tg(H ) (taken
from [18]).

nonlinear terms. The large magnetic field dependence of ρex/M around Tg has been predicted
in the chirality scenario of the canonical SGs [12]. In order to discuss this point in more detail,
precise measurements under smaller fields are required.

In the conventional theories [21, 22] the extraordinary Hall resistivity is represented as

ρex = M(Aρ + Bρ2), (1)

where ρ is the resistivity, and A and B are constants relevant to the detailed band structure
of the conduction electrons. In equation (1), the first and the second terms represent the skew
scattering and the side jump effect respectively. In the present case, the temperature dependence
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Figure 3. Temperature dependence of resistivity ρ under ZFC and FC conditions in the fields
indicated (taken from [18]).

of ρ, as shown in figure 3, is monotonic and smooth even around Tg(H ), and the difference
between ZFC and FC is not observed in any field. The measurements of ρ were done with
the same sequence used for the simultaneous measurements of the ρex and the M . Together
with this monotonic ρ(T ), the behaviour of ρex/M in figure 2 clearly indicates that one has to
include another term in equation (1).

Tatara and Kawamura [11] have shown, using the standard s–d Hamiltonian, that an
additional term of the extraordinary Hall effect appears when the total chirality χ0 �= 0. The
total chirality χ0 is the sum of the local chirality χi jk weighted by the geometrical factor
which depends on the distance between the spins. The contribution of the total chirality to
the extraordinary Hall effect is independent of those of the conventional ones. Then, the
extraordinary Hall resistivity is expressed as follows [11]:

ρex = M(Aρ + Bρ2) + Cχ0. (2)

Since Heisenberg spins are frozen in a spatially random manner in the SG ordered state, the
sign of the local chirality χi jk appears randomly, which inevitably leads to the vanishing of
the total chirality, χ0 = 0. Therefore, the chirality-driven extraordinary Hall effect vanishes in
bulk SG samples. One possible mechanism to realize a finite uniform chirality was proposed for
the strong coupling case by Ye et al [23]. The authors showed that the spin–orbit interaction
in the presence of a net magnetization M contains a term Hso = DMχ0. In terms of this
Hamiltonian, they have explained the extraordinary Hall effect of colossal magnetoresistance
manganites. This idea was applied to the weak coupling system by Tatara and Kawamura in a
perturbation calculation [11]. They have shown that ρex/M is expressed as follows:

ρex

M
= Aρ + Bρ2 + Xχ + Xnl

χ M2 + · · · , (3)

where Xχ and Xnl
χ are constants with respect to M . The above argument contains two

physically important meanings. First, ρex/M no longer depends on M when M is sufficiently
small. Because ρ(T ) is monotonic, the temperature dependence of observed ρex/M should
be explained in terms of the temperature dependence of the chiral contribution terms. Second,
the fact that the uniform chirality χ0 is induced, through Hso, by the uniform magnetization M
means that M acts as a ‘symmetry-breaking field’ of χ0 [11, 12]. Therefore, M is regarded as
a ‘chiral field’, and the constants Xχ and Xnl

χ in equation (3) are a ‘chiral linear susceptibility’

5



J. Phys.: Condens. Matter 19 (2007) 145213 T Taniguchi

-1

-0.9

-0.8

 0  5  10  15  20  25  30  35  40

R
s 

(1
0-1

0  Ω
 c

m
 G

-1
)

T (K)

AuMn8%

Tg

150G ZFC

Figure 4. Temperature dependence of ZFC RS around Tg = 24.3 K. RS(T ) was measured under
150 G.

and a ‘chiral nonlinear susceptibility’, respectively. In the case of a ferromagnetic transition,
the order parameter is a spontaneous magnetization M , and the symmetry-breaking field is a
uniform magnetic field H . The order parameter susceptibility, which is the order parameter
divided by the conjugate field, namely the uniform magnetic field, shows a strong anomaly
at the transition point. According to the chiral scenario of the canonical SG, the uniform
chiral susceptibility must show a ‘cusp’ at the transition temperature and also ZFC and FC
hysteresis [12], as exactly evidenced experimentally in figure 2.

In the experiments on AuFe, a difference between ZFC and FC measurements below
the spin glass transition temperature Tg was observed in the temperature dependence of
the anomalous Hall coefficient RS(T ) obtained from the simultaneous measurements of the
magnetization M and the anomalous Hall resistivity ρex, while the resistivity ρ(T ) was
monotonic and smooth, and a difference between ZFC and FC measurements was not observed.
Since RS is just a function of ρ in the conventional theory [21, 22], another contribution
has to be included in RS . The origin of the contribution is probably the chirality which
randomly orders in the system. The amplitude of the minimum field was 2000 G due to the
sensitivity of the measurement system [18]. This amplitude of the field is not appropriate to
investigate the critical phenomena of the spin glass transition. We improved the sensitivity
of the measurements and we were able to study the critical phenomena from Hall effect
measurements.

The spin glass transition temperature Tg = 24.3 K of a AuMn spin glass sample with 8
at.% Mn was determined by the cusp temperature in the low-field magnetization measurement.
Figure 4 shows the temperature dependence of ZFC RS of the sample under a field of 150 G
which is one decade smaller than that of the experiments on AuFe mentioned above. The
sharp ‘cusp’ in ZFC RS(T ) at Tg is easily suppressed by magnetic fields. The critical exponent
δχ related to the conjugate field of the order parameter is obtained from this suppression of
RS(Tg). Since the sign of the local chirality appears randomly in this case, the conjugate field is
proportional to M2 [12]. Thus the critical exponent δχ can be obtained from the magnetization
dependence of RS(M(H )) at Tg.

Figure 5 shows the plot of �RS(M2) at Tg in a log scale, which is derived from the field
dependence of RS , where �RS ≡ RS0 − RS and RS0 is the extrapolation value to M = 0. The
extraordinary Hall coefficient including the conventional term is derived as follows:

RS ≡ ρex/M = Aρ + Bρ2 + C Xχ + C ′ Xnl
χ M2 + · · · ,

where A, B , C and C ′ are constants and Xχ and Xnl
χ are linear and nonlinear chiral
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susceptibilities respectively. Since RS0 = (ρex/M)M→0 becomes Aρ + Bρ2 + C Xχ , �RS is
proportional to Xnl

χ M2 in the regime where M is sufficiently small. If the ‘true’ order parameter
of the spin glass transition is not the spin but the chirality, �RS should satisfy the power law
at Tg; �RS ∼ (M2)1/δχ . The two straight lines in figure 5 show the behaviour with δχ = 1.7
and δχ = 3.3 respectively, and δχ is determined to be 2.5 ± 0.8. This value of δχ should be
compared with that of δ determined from the magnetization measurements, where δ is defined
as q ∼ (H 2)1/δ at Tg and q is the Edwards–Anderson order parameter.

The critical exponents of the spin glass transition of canonical spin glass systems were
extensively investigated [6–8] from the nonlinear magnetization measurements. The value of
δ = 3.0 determined in AgMn and AuFe systems is almost the same as that in the AuMn system
shown in figure 6. The details of the scaling analysis of the nonlinear magnetization will be
discussed elsewhere [20]. It should be noted that the value of δχ coincides with that of δ within
experimental errors. The critical phenomena of the spin glass transition of the AuMn system
from the Hall effect measurements are compatible with the predictions of the chirality scenario
of the spin glass transition [12].

In summary, simultaneous measurements of the extraordinary Hall resistivity and the
magnetization were carried out on canonical spin glass systems AuFe and AuMn. The
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temperature dependence of ρex/M , which represents the uniform chiral susceptibility, shows a
cusp at Tg and ZFC and FC hysteresis below Tg. The critical exponent δχ of AuMn was obtained
from the M-dependence of the Hall resistivity at Tg. The value coincides with that from the
magnetization measurement within experimental errors. These observations are compatible
with the prediction by the Kawamura chirality scenario of canonical SGs [12].
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